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The stability of a thermally radiating stratified 
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(Received 5 June 1973) 

A linear stability analysis is applied to a stably stratified, thermally radiating 
shear layer. The grey Milne-Eddington approximation is employed as a radiation 
model. In  contrast to a previously reported optically thin analysis, no inviscid 
instability exists, in the limit of vanishing horizontal wavenumber, for this self- 
absorbing model. The inviscid neutral-stability boundary (Richardson number 
us. dimensionless wavenumber) for the Rililne-Eddington approximation con- 
verges to the optically thick limit as the optical depth of the shear layer is 
increased. As the optical depth of the shear layer is decreased, the inviscid 
Milne-Eddington neutral-stability boundary approaches the optically thin 
limit, although not uniformly in the wavenumber. For fixed mean velocity 
gradient and fluid properties, the inviscid critical Richardson number approaches 
infinity as the optical depth of the shear layer approaches zero. Viscous effects 
neutralize this radiative destabilization, and the critical Richardson number 
eventually returns to zero as the optical depth continues to decrease. A shear- 
layer thickness exists for which the viscous critical Richardson number is 
a maximum. For shear depths greater than this thickness, self-absorption effects 
increase the stability; and for shear depths less than this thickness, viscous effects 
increase the stability. Results of the analysis are applied to the atmospheres 
of Venus and the earth. A critical Richardson number somewhat above the 
non-radiating value of 3 (although below the previously reported optically thin 
value) is found for the lower troposphere of the earth. No substantial effect is 
found for the earth’s lower stratosphere or for the 100 km level above Venus. 

1. Introduction 
In  a recently reported linear stability analysis, Dudis (1973) examined the 

effect of thermal radiation in reducing the stability of a stably stratified shear 
layer. The anaIysis was assumed to be valid for shear layers with depths less than 
an appropriate photon mean-free-path length (taken to be the reciprocal of the 
Planck mean absorption coefficient). Under this condition temperature dis- 
turbances were assumed to be optically thin, radiative transfer was modelled by 
a linearized form of the Newtonian law of cooling and any self-absorption was 
neglected. Inviscid calculations resulted in a complete radiative destabilization 
of the shear layer; the Richardson number became infinite as the horizontal wave- 
number of the disturbances approached zero. The inclusion of viscosity modified 
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this behaviour, and finite critical Richardson numbers were found for all finite 
Reynolds numbers. 

Application of these results to the atmospheres of the earth and Venus yielded 
critical Richardson numbers considerably greater than the non-radiating critical 
value of a. The calculations for Venus were made in an attempt to assess the 
possibility of radiative transfer being the mechanism which maintains relatively 
large turbulent mixing coeficients in the stably stratified upper Venusian 
atmosphere. These large mixing coefficients have been postulated in the literature 
as one way to explain the photochemical stability of upper atmospheric carbon 
dioxide (see Donahue 1971; Ingersoll & Leovy 1971). With this earlier optically 
thin analysis, plausible atmospheric parameters led to a critical Richardson 
number greater than the actual atmospheric value. 

The effect of thermal radiation in suppressing turbulent fluctuations in 
a stably stratified shear flow was investigated by Townsend (1958). He considered 
the equations for the mean-square turbulent velocity and temperature fluctua- 
tions and, through assumptions regarding viscous dissipation, heat conductivity 
and disturbance correlation coefficients, was able to determine a relationship 
between the critical Richardson number and the radiative cooling rate. Goody 
(1964) applied Townsend’s results to several regions in the earth’s atmosphere. 
For the stratosphere he found essentially no radiative effects, and for the lower 
troposphere he calculated a doubling of the critical Richardson number for 
turbulent eddies smaller than a few metres. Results of the optically thin stability 
analysis (Dudis 1973) gave considerably larger increases in the critical Richardson 
numbers for both of these regions. 

One of the possible difficulties with the optically thin stability analysis con- 
cerns the neglect of self-absorption effects. This neglect becomes increasingly 
questionable for small wavenumber (large wavelength) disturbances where the 
maximum radiative destabilization was found. The present paper will consider 
self-absorption in order to explore more carefully the small wavenumber optically 
thin instability. Hyperbolic-tangent mixing-layer profiles of mean velocity and 
potential temperature, investigated in the optically thin case, will be employed. 

Radiation will be treated by employing the grey Milne-Eddington (or dif- 
ferential) approximation. First, we shall consider a shear layer whose depth is 
much greater than a photon mean-free-path length. Under this condition the 
Milne-Eddington approximation reduces to the optically thick approximation, 
and radiative transfer will be entirely diffusive. Inviscid computations will be 
performed; it will be shown that the viscous problem is equivalent to that con- 
sidered by Miller & Gage (1972), concerning the effect of reduced Prandtl 
numbers on the critical Richardson number. 

This analysis will be followed by a more general treatment of the Milne- 
Eddington approximation; we shall investigate the effect of varying the optical 
depth of the shear layer. I n  particular, we shall be concerned with comparing the 
results of this approximation, as the optical depth goes both to zero and infinity, 
with the results of the optically thin and thick approximations, respectively. The 
specific numerical examples for the earth and Venus considered by Dudis (1973) 
will be reconsidered, employing the results of the Milne-Eddington approximation. 
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2. Governing equations 
The notation employed in this paper will be identical to that of Dudis (1973) .  

We shall consider a stratified shear layer with velocity U(z) = ( U ( z ) ,  0 , O )  and 
potential temperature Q z ) ,  where these profiles are given by 

U = AUtanh(z/L), 8 = To+A8tanh(z/L). 

The linearized Boussinesq equations and boundary conditions governing dis- 
turbances to this basic state are 

( 2 . l a )  

(2.1b) 

v . u  = 0, (2 . l c )  

u,$,p,q+O as ~ + f ~ f ) ,  ( 2 . 1 4  

where dldt = a/at + U a/ax. Once again, u = (u, v, w), $, p and q represent velocity, 
temperature, pressure and radiative heat flux disturbances, respectively. The 
acceleration due to gravity g = (0 ,0 ,  - g ) ,  a reference density po, a reference 
temperature To, the kinematic viscosity v, the coefficient of thermal conductivity 
K and the specific heat a t  constant pressure c p  are all assumed constant. 

Radiation Will be modelled by the Milne-Eddington approximation (Vincenti 
& Kruger 1965, p. 492) .  This approximation assumes spectrally invariant absorp- 
tion and an isotropic closure relation between directional moments of the radia- 
tion intensity to give a differential approximation to the equation of radiative 
transfer. In  dimensional linearized form it is given by 

(2.2) a-'V(V. 9) - 3aq - 16aTiV$ = 0, 

where a is a grey absorption coefficient and CT is the Stefan-Boltzmann constant. 
It can be seen that this approximation apparently reduces to the thin (a  --+ 0) 
and thick (a -+ 00) limits (Dudis 1973, thin limit; Goody 1956, thick limit) if 
we identify a as the Planck mean a], in the thin limit and as the Rosseland mean 
a, in the thick limit. 

The complete system of equations and boundary conditions to be solved is 
(2.1) and (2.2).  We non-dimensionalize the equations using L, AU, AB, P ~ ( A U ) ~  
and L/AU as the length, velocity, temperature, pressure and time scales, re- 
spectively. The radiative heat flux q will be scaled against the linearized New- 
tonian heat flux 16,aLTi AB. Henceforth, all quantities will be in non-dimensional 
form and the variables given above will now represent non-dimensional quantities 
unless otherwise specified. Thus, in non-dimensional form the linearized Bous- 
sinesq and Milne-Eddington equations and boundary conditions are given by 

du au 1 
-+w- = -v  at a2 p + Ri$k +Re V ~ U ,  

a$ ae 1 167- -+w- = 
clt a2 P R e  Bo - V2$ -- v .  q, 

(2 .3a )  

(2.3b) 
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v.u  = 0, ( 2 . 3 ~ )  
V(V. q)  - 372q - v#J = 0, ( 2 . 3 d )  

u , # J , p , q + o  as z++oo ,  (2 .3e)  

where U = tanhz, a8/az = sech2z and k is a unit vector in the positive-z direc- 
tion. The Reynolds number Re, Prandtl number P, Richardson number Ri, 
Boltzmann number Bo and optical thickness 7 are given by 

g(A6IL) V , Bo=- p O c p A U ,  7 = aL. (2 .4 )  
V To(AU/L)2’ = - 4 P o c P  (TT! 

, Ri = 
A U L  Re = - 

Normal modes will be employed and i f f  is any disturbance quantity, then 
f(x, t )  = f(z) exp i (kx  + l y  - kct), where c = c, + ic,. We shall consider two- 
dimensional disturbances (6 = 1 = 0), and owing to the antisymmetry of the 
basic profiles the wave speed c, = 0. Letting q = (s, 0, r )  and G = 167/B0, we 
find that &, $, 8 and B satisfy the equations 

M2&/k  Re = i{( U - ic,) Mi3 - U”S} + k Ri 6, ( 2 . 5 ~ )  
M $ P  Re = ik (  U - ic,) $+ 6’& + G(P - iki?), (2 .5b )  

?’ + ik8 = (37 1% % ) A + $ ,  ( 2 . 5 ~ )  
8‘ = ik?, (2 .5d)  

where M = d2/dz2 - k2 and a prime represents dldz. This system is to be solved 
subject to 

& , $ , ~ ? , P - + o  as z +  +a. (2.6) 

It can be seen from ( 2 . 5 ~ )  that, if / 3 ~ ~ / i k (  < (ikl or 7 2  k2, then .P’+ik8 N“ $, 
and we recover the optically thin equations of Dudis (1973) .  Thus, it appears 
that as k --f 0 the results obtained by employing the Milne-Eddington approxima- 
tion may differ from those obtained by employing the optically thin approxima- 
tion. This will be verified in the following sections. 

The vertical component ? of the heat flux may be eliminated from (2 .5b ,  c, d )  
and the complete system of equations may be written as 

( 2 . 7 ~ )  

(2 .7b )  

( 2 . 7 ~ )  

M 2 8 / k  Re = i{( U - ic,) M 8  - U”&} + k Ri $, 
M$/P Re = {ik( U - ic,) + G} $+ 8’8 + (3G721ik) 8 ,  

MB - 3 ~ ~ 8  - ik$ = 0, 

which are to be solved subject to 

& , $ , B - + o  as z-++co.  (2 .8 )  

3. Analysis 
3.1. Optically thick limit 

For 7 9 1 we shall assume that ( 2 . 5 ~ )  may be approximated by 

(3-r2/ik) 3 + $ = 0. (3 .1 )  

This is equivalent to neglecting the first term in the Milne-Eddington equation 
( 2 . 3 d ) .  Under this approximation (2 .5b ,  d )  and (3 .1 )  may be combined to give 
the optically thick form of the energy equation: 

M$/P Re = i k (  U - ic,) $+ 8’8 - HM$, (3 .2 )  
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where H = 16137Bo represents the ratio of radiative to convective heat transport 
in the basic state under the optically thick approximation (see Goody 1956). The 
parameter H ,  appropriate in the optically thick limit, is related to the parameter 
G, appropriate in the optically thin limit, by 

H = G/3r2. (3.3) 

The optically thick form of the energy equation also may be readily derived 
from (2.7 b, c) by expanding 8 as 

B = 8, + 7-23, + 7-48, + . . . . 
Substituting this into (2.7~) and retaining only the highest-order terms in 7 
(those of order r2) results in the standard non-radiating energy equation. 
Retaining the terms of next highest order (those of order T O )  gives (3.2). 

1 is equivalent to  requiring the vertical length scale L 
of the shear layer to be greater than some photon mean free path h = a-l. For 
the case of optically thick temperature disturbances the appropriate path length 
is the Rosseland mean free path A,,, which is the reciprocal of the Rosseland 
mean absorption coefficient an (see Goody 1964, p. 58). Since both the vertical 
and horizontal scales of temperature disturbances are found to be at  least 
as large as L, the condition that L $ A, is sufficient for (3.2) to be a valid 
approximation. 

Now define a radiatively modified Prandtl number PE by 1/PR = 1/P + Re H .  
Then the energy equation (3.2) becomes the standard non-radiating equation, 
though at  the reduced Prandtl number P,. The effect of reduced Prandtl number 
PR on the stability of a stably stratified shear layer has recently been considered 
by Miller & Gage (1972). For reduced Prandtl numbers, they find increased 
critical Richardson numbers a t  finite Reynolds numbers. However, as the 
Reynolds number increases, the effect of reduced Prandtl number decreases, 
and in the inviscid limit it  disappears entirely for fixed but small Prandtl numbers. 

The inviscid limit of the current problem corresponds to the double limit, 
in Miller & Gage’s investigation, Re -+ 00 and P, -+ 0 such that 1/Re PR -+ H.  
This inviscid limit is the major interest in the current investigation, for two 
reasons. First, a complete destabilization (no critical Richardson number exists) 
was found in this limit for the optically thin model (Dudis 1973), and we wish 
to examine this possibility in the optically thick limit. Second, in order for (3.2) 
to be valid, the shear-layer depth and consequently the corresponding Reynolds 
number must be extremely large under typical terrestrial conditions (at sea 
level with 100 yo relative humidity, A, is greater than 2 km and increases rapidly 
with increasing altitude and decreasing humidity). 

Thus, we shall consider the inviscid limit Re -+ CQ, in which (2.7~) and (3.2) may 
be written as 

k R i & + i { ( U - i ~ , ) M $ -  U”$] = 0, ( 3 . 4 ~ )  

i k ( U - i c , ) $ + e ’ ~ - H M &  = 0. (3.4b) 

The condition that 7 

These equations are to be solved subject to 

&,$ - to  as x - + i - c o .  (3.5) 
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; 

Ri 

FIGURE 1. Optically thick neutral-stability boundary. 

The neutral-stability boundary is the solution of the above eigenvalue problem 
for which ci = 0. As an alternative to finding analytic solutions in the neighbour- 
hood of the origin from which to begin numerical integration, we shall consider 
the non-singular system with a small but finite growth rate. This non-singular 
system may be solved by the same numerical procedure as was employed by 
Dudis (1973) in solving the viscous, optically thin problem; the details are given 
in the appendix. It is found that ci = low4 is a sufficiently small value of the 
growth rate to give an accurate approximation to the neutral-stability boundary. 
Decreasing ci below does not change the first three significant digits of the 
resulting eigenvalues. Results for H = 0.1 and 1-0 are given in figure 1. The 
curve labelled H = 0 is the non-radiating analytic solution Ri = k( 1 - k )  (see 
Drazin & Howard 1966). It is to be noted that the small wavenumber instability 
of the optically thin model (Dudis 1973) is not present in the optically thick limit. 

As in the optically thin limit, it also may be shown in the optically thick case 
that, for a fixed wavenumber and a sufficiently large value of the radiation 
parameter H ,  the Richardson number is a linear function of this parameter. 
If Hk2 9 k or H k  9 1 then it would appear that (3.4b) could be approximated by 

(3.6) 

k ( R i / H ) $ + i ( U - i c , )  M&-iU"& = 0, (3.7a) 

8% - HM$ = 0. 

Letting $ = H$in ( 3 . 4 ~ )  and (3.6) we arrive at  

Of&- M$ = 0. (3.7b) 

Thus, RiIH is a function of k for sufficiently large Hk.  This is illustrated in 
figure 2, where we have plotted R i / H  us. k for several values of H .  The curve 
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RilH 

FIGURE 2 .  Optically thick Ri/H boundary. 

marked H = 00 is a solution of the limiting system (3.5) and (3.7), and for this 
system it is found that the critical Richardson number Ri, (maximum of Ri 
with respect to  k) is given by 

For H = 5 ,  Ri, obtained from (3.8) is within 3 % of the correct value, and the 
approximation improves as H increases further. 

Ri, = 0.66iH. (3.8) 

3.2. Inviscid case, general opacity 

( U - i c i ) M 8 -  U"&-ikRi$  = 0, ( 3 . 9 ~ )  

(3.9b) 

( 3 . 9 4  

~ , $ , B + o  as x + + 0 0 .  ( 3 . 9 4  

I n  the limit Re + 00 the complete inviscid system may be written as 

{ik( U - ic,) + G} $ + 6'8 + ( 3Gr2/ik) 5 = 0, 

M5 - 3728 - ik$ = 0, 

These equations are equivalent to  a fourth-order ordinary differential equa- 
tion. The neutral-stability equations (ci = 0) are singular a t  z = 0, where U = 0, 
and again we shall approximate the neutral eigensolutions by keeping a small 
but non-zero growth rate. The numerical procedure employed (see appendix) 
is the same as that employed for the optically thick case. 

We shall examine first the behaviour of the neutral-stability boundary for 
the case of small optical thickness and small wavenumber. I n  figure 3 we have 
plotted a region of the neutral-stability diagram (Ri us. E )  for a fixed G of 0.5 and 
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FIGURE 3. Inviscid Millie-Eddington neutral-stability boundary for G = 0.5. 

for several values of r. The curve marked r = 0 is the optically thin result obtained 
by Dudis (1973) .  It can be seen, in contrast to the optically thin result, that 
a critical Richardson number exists for all non-zero r. However, the critical 
value goes to infinity as r -+ 0. This result is consistent with the observation made 
in 9 2, that the Milne-Eddington approximation reduces to the thin approxima- 
tion if r2 < k2. Thus, in figure 3, as r is decreased, the Richardson numbers from 
the self-absorbing Milne-Eddington approximation follow the optically thin 
(r = 0 )  result to progressively lower values of k before diverging and returning 
to zero. It also should be noted that the critical Richardson number Ri, occurs 
approximately at k = r. Since k has been non-dimensionalized by L, this means 
that the greatest destabilization takes place for disturbances whose horizontal 
wavelength A, (dimensional) is just 277 times the photon mean-free-path length 
h = a-I. It will be shown below that this is a general feature of the small-r 
case, and not merely peculiar to  G = 0.5. 

We shall digress briefly from the case of small optical thickness and examine 
the behaviour of the critical Richardson number Ri, over the entire opacity 
range from thin to thick. In figure 4(a)  we have plotted Ri, vs. r for fixed G. 
Since G = 16r/Bo = 1 6 a a L T ~ / p o c p A U ,  keeping G fixed and varying r corre- 
sponds to varying the depth of the shear layer while keeping the mean velocity 
gradient AUIL and fluid properties a,  po, cp and To fixed. In  this case Ri, -+ co 
as r -+ 0,  the thin limit. It should be remembered that these inviscid results will 
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F I U m E  4. Inviscid Milne-Eddington Ri, W.Y. T for (a) fixed G ,  
(b )  fixed H and (c) fixed Bo. 
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be modified by viscosity as T + 0, since in this limit Re also tends to zero for 
fixed v and a. I n  the limit r + 00, the thick limit, Ri, + 0.25. We recall that the 
thin and thick radiation parameters (G and H ,  respectively) are related by 
G = 3r2H.  Thus, for fixed G ,  H decreases as T increases, and in contrast to (3 .8 ) ,  
the critical Richardson number Ri, approaches the non-radiating value of 0.25, 
as indicated in figure 4 (a) .  

A further view ofthe optically thicksideof the Milne-Eddingtonapproximation 
is given by figure 4(b). Here we have plotted Ri, vs. r for fixed values of the 
optically thick parameter H .  It can be seen that t h e  Milne-Eddington results 
approach the optically thick limit rapidly. For T 3 5 the critical Richardson 
numbers have essentially reached their optically thick values given in $ 2 .  

I n  figure 4(c),  we have plotted Ri, vs. T for several values of the Boltzmann 
number Bo (the dashed lines for fixed G are included for reference). Keeping 
Bo fixed and varying r corresponds to changing the depth of the shear layer, 
while keeping the velocity difference across the shear fixed (again for fixed a, 
po, cp and To). The greatest destabilization occurs for r between 0.4 and 0.8 
(for sufficiently small Bo it will be seen, in connexion with figure 5 (b ) ,  that the 
maximum critical Richardson number occurs a t  r M 0 . 3 ) .  The critical Richardson 
number returns to its non-radiating value of 0.25 for r + 0 and T 4 co. 

We shall consider the inviscid stability problem, again for the limiting case 
G/k  B 1 .  This limit is of considerable importance for small r since the critical 
Richardson number occurs for k M r ,  and thus the limiting results may be 
applicable even for relatively small G .  Assume that for G / k  $ 1 equation (3 .9b )  
may be written as 

G$ + 8'8 + ( 3 G ~ 2 / i k )  B = 0. (3 .10)  

If we now make the change of variables 

(3 .11)  h $ =  G$, S =  iG8, W =  W ,  

then ( 3 . 9 a ,  c, d )  and (3 .10)  may be written as 

(U-ic , )  MW- U"W-ik (Ri /G)$  = 0, (3 .12a)  

C$ + B'W - (3+) S = 0, (3.12 b )  

MS - 37% + k$ = 0, ( 3 . 1 2 ~ )  

( 3 . 1 2 4  w,$ ,s+o as z - t - t c o .  

I n  this limit Ri/G is a function of k and r, and the critical Richardson number is 
a function of r alone. That is, 

Ri,lQ = g w ,  (3 .13 )  

for G / k  + 1. For 7 $- 1 we know that Ri, approaches its thick limit, where (3 .8 )  
applies for H l / k .  Comparing (3 .13)  and ( 3 . 8 ) ,  and since G = 3r2H, we see, 
that, as T + co, g(7) + 0-667/3r2, and this is valid only for H = G/3r2  3 l / k .  Thus, 
although (3 .12)  will be an accurate approximation for G $- k if T < 1, it is valid 
only for G 9 372/k for large T .  An alternative approach may be employed to show 
that Gjk 9 1 is not a sufficient criterion to apply in order for (3 .12 )  to  be an 
accurate approximation. If we assume that for large T ( 3 . 9 ~ )  may be approxi- 

- 

- 
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\ r  1.0 0.1 0.01 0.001 0~0001 
G\ 
0.1 2.71 3.07 6.22 24.8 83.1 
0.5 1.05 2.04 7.98 27.4 85.4 
1.0 0.463 2.10 8.25 27.8 85.7 

10.0 0.198 2.21 8.55 28.1 90.2 
03 0.181 2.23 8.56 28.1 90.2 

TABLE 1. Critical values of Ri/G for several values of G and 7 

mated by 3728 z --ik$, the last term in (3.9b) is z -G$, and thus we cannot 
neglect ik( U -ici) with respect to G as was done in arriving a t  (3.10). 

I n  table 1 we have listed values of the critical Richardson number divided by G 
for various values of G and r.  The last line for G = 00 represents the results for 
the limiting system (3.12). For a given value of G, it can be seen that the approxi- 
mation improves appreciably as + 0. For G 0.5 and < 0.1 the large-G/k 
limit is within 10 % of the actual Ri,/G for given G and 7. 

It was mentioned above for the case of G = 0.5 that as r -+ 0 the critical 
Richardson number occurs a t  k z 7. This is also true for the large-G/k limit. For 
a given value of the critical value of RiJG is found to lie a t  k z 7 and to be 
approximately 0.62 times the transparent value of Ri/G (Dudis 1973) a t  the 
same k. Since Ri/G varies as k-3 for k -+ 0 in the transparent large-Glk limit, it 
would be expected that RiJG N 7-i as 7 + 0. This is indicated in figure 5 ( b ) ,  
where the dashed line represents, empirically, 

Ri, z 0.9G7-4, (3.14) 

for + 0. For any fixed G it is possible to find a small enough 7 such that (3.14) 
is an accurate approximation to the actual critical value. 

Since Ri, is a linear function of G (for fixed 7) in the large-G limit, we also have 
that Ri, is a linear function of Bo-l. In  figure 5 ( b )  we have plotted RiC/l6Bo-' us. 
for this large-G limit. From this graph it can be seen that for sufficiently small Bo 
(large G )  the maximum destabilizing effect for fixed Boltzmann number occurs 
at an opacity of about 0.3. It appears that Ri, + 0 as + 0, but it must be 
remembered that these results are a valid approximation for arbitrary Bo only 
for G sufficiently large; in the limit 7 --f 0, Bo fixed, G also tends to zero, and the 
approximation becomes invalid. The smaller the value of Bo, the smaller the 
value of 7 may be for which figure 5 ( b )  gives an accurate prediction of the critical 
Richardson number. 

After digesting all the above results it becomes evident that the greatest 
destabilization in this inviscid Milne-Eddington model occurs when considering 
shear layers of fixed mean shear AUIL and letting the scale L of the shear layer 
(and consequently the optical thickness r )  approach zero. For this case (3.14) 
eventually becomes valid, and the critical Richardson number approaches 
infinity as the shear depth approaches zero. However, as the shear layer becomes 
thinner, viscosity should play an increasingly important role as a stabilizing 
mechanism. I n  the following subsection this viscous effect will be considered. 
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I I I I I I 1 1 1  I I I I 1 1 1 1  

7 

3.3. Viscous case, general opacity 
The complete viscous eigenvalue problem is given by (2.7) along with boundary 
conditions (2.8). These equations are equivalent to a single complex-valued 
eighth-order differential equation. Instead of solving this system numerically 
we shall look again at the limiting ease of large G/k. One reason for treating the 
approximate system is that, for the interesting case of fixed G and 7 + 0, the 
critical Richardson number will be located a t  small T and k, where moderate 
values of G are sufficiently large for the approximation to be accurate. Second, 
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FIGURE 6. Viscous Milne-Eddington RiJG V.Y. Re in large-G limit. 

we shall again be able to show that Ri, is a linear function of G for fixed r and 
Re, and thus, provided that G is large enough, we shall have avoided the necessity 
of having to carry out a separate computation for each distinct value of G. 
Third, the approximation will reduce the number of linearly independent de- 
caying solutions from four to three, and it also will eliminate the numerically 
troublesomesolutionswhich (forz < 0 )  grow as exp ( - GP Re*z) (see Dudis 1973). 

We shall employ the transformation of variables (3.11) and assume that 
G/k $ 1 and GP Re % 1. Under these conditions, and assuming neutral stability 
(ci = 0)) the system (2.7) and (2.8) may be approximated by 

M2W - k Re (i( UlMW - U"W) - k(Ri /G)  $} = 0, ( 3 . 1 5 ~ )  
6'G - ( 3r2/k) S + $ = 0, (3 .15b)  

MS - 37's + k$ = 0, (3.15 c) 
s,$,w-+o as z - t - ~ c o .  (3.15d) 

Once again Ri/G becomes the new eigenvalue as a function of k, r and Re; and 
for fixed Re and 7, the critical Richardson number Ri, is a linear function of G .  

The method of solution of the eigenvalue problem (3.15) is similar to that 
employed in treating the optically thin viscous problem (Dudis 1973). Complete 
details are given in the appendix. Results from the numerical computations are 
given in figure 6, where the straight line labelled r = 0 is the optically thin result 
Ri,/G = 0-53Re* from Dudis (1973). The dashed lines represent extrapolation of 
the viscous results up to the inviscid limit given along the right-hand ordinate. 
It is possible to carry out the viscous computations only up to some finite value 
(depending on r )  of the Reynolds number; beyond this value, growing exponential 
solutions lead to numerical instabilities. The most dangerous solution 

N exp[-(kBe)tzl 
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(Z is negative over the range of integration, see appendix), and i t  is generally 
possible to obtain solutions up to k, Re N 200 (the critical wavenumber k, is the 
value of the wavenumber which yields Ri,). For fixed r ( < 0-l) ,  k,  approaches 
T as Re + 00, and thus viscous results may be obtained for increasing values of 
Re with decreasing r.  

With increasing Reynolds number, the values of the critical wavenumbers for 
figure 6 vary from 0.06 to 0 along the straight line T = 0, from 0-06 to 0.001 along 
r = 0.001, from 0.06 to 0.oi along r = 0.01, from 0.2 to 0.1 along r = 0.1 and 
from 0.4 to 0.3 along r = 0.5. 

From figure 6 it may be seen that the viscous (finite Reynolds number) Milne- 
Eddington results become the optically thin ones as r + 0. For small enough 
T ( < O n O I ) ,  say) and a t  low Reynolds number, the Milne-Eddington approxima- 
tion yields critical Richardson numbers practically equal to the optically thin 
values. However, as the Reynolds number increases, eventually the Milne- 
Eddington curves branch off and approach their inviscid limit, whereas the thin 
approximation has no inviscid limit, and RiJG -+ co as Re*. 

Also, one can infer from figure G that a transverse dimension L exists for which 
thermal radiation will have the largest destabilizing effect (i.e. the largest critical 
Richardson number) on a shear layer of given fluid properties a, po, To, v and 
cp and mean velocity gradient AUIL. The argument is as follows. Under these 
conditions G is fixed, r - L and Re N L2. Assume that a given value of L corre- 
sponds to  some point (7, Re) in the lower right-hand corner of figure 6. As L is 
decreased, the locus of (7, Re) moves up and to the left, since both r and Re 
are decreasing. Eventually, however, we must reach a limiting value of L where 
any further decrease in L leads to a lowering of the point (7, Re). This limiting 
value of L yields the largest critical Richardson number for the specified fluid 
properties and mean velocity gradient. Further, this condition will correspond 
to  a small value of 7, as can be inferred from figure 6. Specific cases will be examined 
in the following section. 

4. Discussion 
The results of § 3 will now be applied to the examples considered previously in 

the optically thin limit (Dudis 1973). Before proceeding further i t  will be necessary 
to relate the grey absorption coefficient M: to a real, non-grey radiating atmosphere. 
This will be accomplished by employing a result of Spiegel(i957) which relates 
the radiative decay rate N of a spherically symmetric temperature perturbation 
in a grey gas to a grey absorption coefficient and the length scale of the tempera- 
ture perturbation. Adapting Spiegel’s result to the present problem gives (see 
Dudis & Traugott (1  974) for a more detailed discussion of this determination of 
an effective absorption coefficient) 

(4.1) 

For a pure CO, atmosphere, Goody & Belton (1967) have computed the non- 
grey radiative decay rate N as a function of the disturbance length scale. They 
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also give corresponding results for the earth's atmosphere with a water vapour 
content similar to that which will be considered here. Thus, given the atmo- 
spheric conditions and a shear-layer length scale, we can determine N from the 
results of Goody & Belton; T (and consequently an effective absorption co- 
efficient) can be calculated by solving the transcendental equation (4.1) with 
this known value of N .  Under most conditions which we shall consider, T will 
be small and the second term in brackets in (4.1) may be neglected. Thus, the 
stability parameter G is approximately related to N by 

G M N / S ,  

where S = A U / L  is the mean shear rate across the shear layer. 
The examples to be considered are the upper atmosphere of Venus (at  100 km) 

and the earth's lower troposphere and lower stratosphere. We shall consider 
first the 100 km level above Venus, where it is assumed that the atmosphere is 
entirely CO,. As in Dudis (1973) we shall take typical values of the temperature 
To, density po and mean shear S to be given by 

To = 150 "K, po = 7.3 x g cm-3, X = lo-, s-l. 

This large shear is chosen to be representative of the four-day Venus circulation 
(Gold & Soter, 1972). For the 400 m shear layer ( L =  Zoom) Considered in Dudis 
(1973)) Re = 3700. We find from the procedure outlined above that r = 0.001 and 
G = 0.025. It should be noted that this value of r (and therefore G as well) is much 
smaller than that employed previously in the optically thin analysis. This is due 
to  the fact that the choice of the Planck mean in the previous analysis was, for 
the length scale considered, an overestimation of the CO, absorption coefficient. 
From figure 2 of Goody & Belton it can be determined that only for shear layers 
more than three orders of magnitude thinner than that considered here will 
radiative transfer be governed by the thin approximation with the Planck mean 
as the effective absorption coefficient. I n  the present case, the viscous large-Glk 
results (the critical wavenumber k, M 7, giving Glk M 25)  from figure 5 ( a )  give 
RiJG M 8, corresponding to Ri, M 0.3. Since the inviscid large-Glk limit (last line 
in table 1) yields values for Ri,/G generally greater than those obtained for finite 
values of G, one would expect the viscous approximate value of 0.3 to be an 
upper bound to the exact value. Neither increasing nor decreasing the length scale 
L will lead to any appreciable increase in Ri,. For increased L, a decrease in G 
will reduce Ri,; viscous effects will limit the growth of Ri, as L is decreased. Thus, 
for this altitude, radiative transfer will have little effect on the stability charac- 
teristics. A more complete analysis of possible destabilization in the Venusian 
atmosphere is given by Dudis & Traugott (1974). 

Next, we shall consider the earth's lower troposphere. As before, we shall take . 

T~ = 300 O K ,  Po = 1.3 x 10-3~cm-3, s = 2 x 10-3s-1. 

With 300p.p.m. CO, (by volume) and 3mbar of water vapour (approximately 
10 yo relative humidity) we find, for the 20 m shear layer ( L  = 10 m) considered 
previously, r = 0.11 and G = 0.13. The corresponding Reynolds number 
Re = 15000. It can be seen from figure 6 that for this relatively large value of 
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Re the shear layer is practically inviscid. In  table 1, we note that, for r = 0.1 
and G = 0.1, RiJG = 3.07, giving Ri, z 0.3. An exact inviscid calculation for 
T = 0.11 and G = 0.13 yields Ri, = 0.33, which is considerably less than the 
value of 4.2 determined from the optically thin analysis. The value of L which 
gives the maximum critical Richardson number is approximately one metre. 
For this shear layer, r = 0.052, G = 0.062, Re = 150 and Ri, z 1.1. The large-G 
viscous results are assumed valid since, in the inviscid case, RiJG for G = 0-5 
and r = 0.1 is within 9 yo of the large-G/k limit; see table 1. 

Qualitatively, this result for the earth's lower troposphere is similar to that 
obtained by Goody (1964, p. 369) in his application of Townsend's (1958) results. 
For the same physical parameters (mean shear, density, temperature and water 
vapour partial pressure), Goody finds critical Richardson numbers doubled over 
their non-radiating values for turbulent eddies smaller than a few metres in 
diameter. It should be noted, however, that Townsend's non-radiating critical 
Richardson number is and not the of the present analysis. Also, in the present 
laminar analysis viscous effects drive critical Richardson numbers back to zero 
as the shear-layer depth (and hence the Reynolds number) approaches zero, 
whereas Townsend obtains a maximum increase as the turbulent eddy size 
approaches zero. 

The final example to be considered is the 20 km level in the earth's atmosphere, 
where we assume 

To = 220"K, po = 8.9 x 10-5gcm-3, S = 2 x 10-3s-1, 

with 300p.p.m. CO, (by volume) and no water present. Under these conditions 
and for a 240m deep shear ( L =  120m), r =  7 x 1 0 4 ,  G =  3 - 8 ~ 1 0 - ~  and 
Re = 180 000. An inviscid calculation for these values of G and r yields a critical 
Richardson number of about 0.25. The inclusion of viscosity could only lower 
this value: thus, for a shear layer of this thickness radiative destabilization is 
negligible. At this altitude, the same result is found for all shear-layer thick- 
nesses. Again, this is qualitatively similar to the conclusion reached by Townsend 
(1958), who was unable to explain the existence of observed stratospheric 
turbulence on the basis of radiative destabilization. 

The author thanks S. C. Traugott for many helpful discussions during the 
investigation. He also thanks R. D. Cess for pointing out an overestimation of 
non-grey atmospheric opacities in an earlier draft of this paper. 

Appendix. Solution of the eigenvalue problems 
Inviscid optically thick system 

Owing to the antisymmetry of the basic profiles U and 6, the system (3.4) and (3.5) 
possesses a solution (a, $) such that (a(z), $(z))  = (a*( - z ) ,  $*( -2)) (where a* 
represents the complex conjugate of a). This leads to the boundary conditions 

As z -+ - 00, U -+ - 1 and U",  6' --f 0. Under these conditions 
Re(&', &) = Irn(&,$) = 0 a t  z = 0. (A 1) 

ai - eAiz, $i - &2ieAiz (i = I ,  2), (A 2a)  
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where 6ij is the Kronecker delta and 

A, = k ,  A, = k[  1 + (kH)-l (ci - i)]*. (A 2 b )  

Solutions (A 2) are used as starting values to begin numerical integration from 
some large negative z = X to the origin. These two linearly independent solutions 
(&Ii, $?i) (i = 1 ,2 )  are related to the actual eigenfunctions (which satisfy both 
(A I) and (A 2)) by 

8 = (l+iA)@,+(B+iC)8,, 

6 = ( 1  + i ~ )  $,+ ( B + ~ c )  &, 
where A ,  B and C are real constants. Application of boundary conditions (A 1) 
to (A 3) yields four algebraic equations for the three unknown constants A ,  B 
and C. As in Dudis (1973), we solve two different sets of three equations each, 
and in general find different values of A ,  B and C. If SA, SB and SC represent the 
differences between these, we vary Ri (with k ,  r, Bo and Re fixed) until all of the 
6’s change sign between two values of Ri. Newton’s method is then used to find 
the correct eigenvalue, where all of the differences are zero (meaning that both 
sets of equations yield the same starting values for 8 and 6). 

As was pointed out by Dudis (1973), the magnitude of Z which is necessary for 
(A 2) to be a valid approximate solution depends on the wavenumber k (eB < k2). 
For small k ,  this implies that the equations must be integrated numerically for 
a considerable distance from the origin. In  order to avoid the necessity of 
integrating the equations over large distances we shall again employ the method 
of Gage (1972). In  this method the basic profiles are approximated by - 1 for 
z < z1 (generally z1 is taken as - 3). For z = z1 solutions (A 2) are valid. The values 
of 8, and $i on either side of the singularity in the basic profiles a t  z = z1 are 
found by employing the jump conditions determined from (3.4). The method of 
solution then proceeds as described above. Complete details for determining the 
jump conditions are given in Gage (1972) and Dudis (1973). For the present 
problem these conditions are found to be 

1 [ va;- v718i] = 0, [a i /V]  = 0, 

[* VGi - H&] = 0, [$&I = 0, 

where V = U-ici and [$] represents the jump in 4 across the singularity a t  
z = zi. If z1 is decreased beyond - 3 no change is found in the resulting eigenvalues 
to three significant digits. 

Inviscid Milne-Eddington system 

Equation (3.9b) may be solved for 4 iu terms of 8 and 8. Substituting the result 
into (3.9a, c) and letting I = iG8 yields the following two equations in two un- 
knowns: 

i k R i  ( I h  3;s) V M G - V ~ ~ + ~  ew-- = o ,  
G+zkV 

(A 5 )  

P L M  64 6 
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These equations are of the same order (equivalent to  a single fourth-order 
equation) as the inviscid optically thick equations. The method of solution is 
the same as that described above, except that  we now have decaying exponential 
solutions different from (A 2 )  and jump conditions different from (A 4). Boundary 
conditions (A I)  apply with S replacing 6. 

I n  the inviscid Milne-Eddington system (A 5 )  the two decaying exponential 
solutions €or U = - 1 and U” = 8‘ = 0 are given by 

Gi N exiz, si N & i e h i e  (i  = 1,2) ,  (A 6a)  

where 
3 G ~ ~ ( G + k c ~ + i k )  

(G + kcJZ + k2 ‘I 
The jump conditions across the singularity a t  z = z1 are given by 

Again z1 = - 3 and ci = 
causes no change, to three significant figures, in the resulting eigenvalues. 

are employed. A decrease in either of these values 

Viscous Milne-Eddington systenz , large-G/k limit 

If (3.15 b )  is solved for 3 in terms o f 5  and S ,  this equation may be substituted into 
(3 .15a,  c )  yielding two equations in the two unknowns, W and S: 

MS-kO’W = 0.J 

These equations are equivalent to a complex-valued sixth-order ordinary 
differential equation. Again, owing to the antisymmetry of the basic profiles U 
and 8, complex eigenfunctions W and S with W ( z )  = W*( - z )  and S(z)  = $*( - z )  
exist. This determines the boundary conditions 

Re (G‘, W“‘, 3)  = Im (W, W“, 3) = 0 a t  z = 0. (A 9) 

We again approximate the basic profiles by U = O = - 1 for z < zl, and we have 
the following three decaying solutions: 

S ,  - exi”, wi N ( ~ 8 , ~  + + SSi) chi" (i = 1, 2,3) ,  (A 10a) 

where A, = k ,  A, = k, A, = k( 1 - i R e / k ) f .  (A l ob )  

Jump conditions across the singularity are needed in order to continue the 
independent solutions (A 10) across z,, whence numerical integration of (A 8) 
may proceed towards the origin z = 0. These jump conditions are found from 
(A 8) to be given by 

- 

(A 11) 

[GT - ik Re (UW; - U’W,) + k2 R e  (R i IG)  OW,] = 0, 

[Wi] = 0, [Wi + ik R e  UW,] = 0, [Wi] = 0, 

[Si - k8Wi] = 0) [S,]  = 0. 
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The actual eigenfunctions W and S may be written as a linear combination of the 
three independent decaying solutions. Therefore, 

(A 12) I W = (l+iA)W,+(B+iC)W,+(D+iE)w,, 

S = ( 1 + iA) S1 + ( B  + iC) S, + (D + iE )  S,, 

where A,  B, C, D and E represent real constants. Applying boundary conditions 
(A 9) to (A 12) gives six equations for the five unknown constants. We solve two 
different sets of five equations each and, in general, calculate two different values 
for each of the constants. If SA , SB, SC, SD and SE represent these differences, 
we vary Ri (with lc, r, Bo and Re fixed) so as to decrease the magnitude of all the 
S’s, and eventually, between two successive values of Ri, all of the 8’s will change 
sign. Again Newton’s method is used to find the eigenvalue Ri, where all the 
6’s are zero. 
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